极坐标求解
围成区域z1在上z2在下
z1=√(x²+y²),z2=x²+y²
令z1=z2
√(x²+y²)=x²+y²
即r=r²信吵
r=0,r=1
极坐标下D在xoy平面投影可标谈搜示为
0≤θ≤2π,0≤r≤1
体积
V=∫∫(D)(z1-z2)dv
=∫(0,2π)dθ∫(r-r²)rdr
=2π∫(r²-r^3)dr
=2π[(1/3)r^3-(1/4)r^4]|(0,1)
=π/6
极坐标系重要的特性
平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r,θ)可以任意表示为(r,θ ± 2kπ)或(−r,θ ± (2k+ 1)π),这里k是任意整数。如果某一点的r坐标为0,那么无论θ取何含坦历值,该点的位置都落在了极点上。