您的位置首页百科问答

圆周上有n个点,它们表示n个互不相等的有理数,并且其中任意一个数都等于它相邻两数的和,则n的值最小等于几

圆周上有n个点,它们表示n个互不相等的有理数,并且其中任意一个数都等于它相邻两数的和,则n的值最小等于几

答案:n的值最小是6,证明如下:当n=1或2时,条件不满足,因为任意一个数都没有其它两个数和它相邻当n=3时,设三个数依次为a,b,c则有a+b=c,b+c=a,c+a=b,以上三个式子相加,化简得2a+2b+2c=a+b+c,得a+b+c=0,(此方法适用于所有的n,培兄不管n等于多少,所有数之和都等于0)又因为b+c=a,代入a+b+c=0得2a=0,即a=0,把a=0代入a+b=c得b=c,与已知任意两个配尘袭数互不相等矛盾,所以n=3时不成立当n=4时,设四个数依次为a,b,c,d,则根据题意得a+c=b且a+c=d,得b=d矛盾,所以n=4时不成立当n=5时,设五个数依次为a,b,c,d,e,则易证a+b+c+d+e=0,且e=a+d,d=e+c=a+d+c,得a+c=0,得b=0,得c=b+d=d,矛盾,所以n=5时不成立当n=6时,设六个数依次为a,b,c,d,e,f,则易证a+b+c+d+e+f=0,再可证a+d=0,b+e=0,c+f=0,即相对的两个数互为相反数,兄搜根据题意可赋值a=1,b=4,c=3,d=-1,e=-4,f=-3,验证即满足题目条件综上所述,n的值最小等于6ok~~