惯性矩计算公式是:Iz=3.14d4/64。
d后面的4表示4次方。
极惯性矩:由于ρ^2 = x^2 + y^2,故可得极惯性矩与截面专二次轴距内有如上左图所属示的数学关系,即截面对于任意一点的极惯性矩,等于该截面对以该点为原点容的任意一组正交坐标系的截面二次轴距之和。
静矩:
静矩(面积X面内轴一次)把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx=∫ydA。
静矩就是面积矩,是构件的一个重要的截面特性,是截面或截面上某一部分的面积乘以此面积的形心到整个截面的型心轴之间的距离得来的,是用来计算应力的。
注意:
惯性矩是乘以距离的二次方,静矩是乘以距离的一次方,惯性矩和面积矩(静矩)是有区别的。