向量AB=(x1,y1,z1),
向量CD=(x2,y2,z2)
向量AB×向量CD=(y1z2-z1y2,x2z1-x1z2,x1y2-y1x2)
产生一个含孝新向量,其方向垂直于由向量AB,向量CD确定的平面,其方向由右手定则确定。
a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)
也可以这样定义(等效):
向量积|c|=|a×b|=|a||b|sin<a,b>
即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。
而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。
*运算结果c是一个伪向量。这是因为卖老洞在不同的坐标系中c可能不同中枯。