复合函数的定义域由内层函数和外层函数共同确定的。
已知y=f(x),u=g(x)。
则f(g(x))称为由f(x)和g(x)复合而成的复合函数,其中f(x)称外层函数,g(x)称内层函数。
若已知f(x)的定义域为(a,b),求f(g(x))的定义域,则只需要使a<g(x)<b,解集即为f(g(x))的定义域;
若已知f(g(x))的定义域为(p, q), 求f(x)的定义域。
则由p<x<q,可求出g(x)的范围,则g(x)的范围即为f(x)的定义域。
总结:函数f(x),f(g(x)),f(h(x))等函数或复合函数,只要前面对应法则f相同,则定义域的求法为:对应法则f后面括号内的表达式的取值范围相同,即可求出x的范围,即为定义域。
扩展资料:
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数正皮坦通过四则握并运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
判断复合函数的单调性的步骤如下:
⑴求复合函数的定义域;
⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
⑶判断每个常见函数的单调举桐性;
⑷将中间变量的取值范围转化为自变量的取值范围;
⑸求出复合函数的单调性。
参考资料来源:百度百科——复合函数