您的位置首页百科知识

电力大数据包括哪一些?

电力大数据包括哪一些?

那么,“大数据”究竟会给电力企业的未来发展带来什么判知启示呢?“大数据”的核心:更准确地预测“大数据”源自英文bigdata,对这个概念的解释千差万别,美国学者舍恩伯格在他的专著中解释说:“大数据,就是我们可以在更大规模的数据上,做到更多我们无法在小规模数据基础上完成的事情。”他认为,“大数据”的核心就是对庞杂的超大规模数据资料进行分析,从而可以更准确地预测,这必然引发商业变革。以欧洲快销时尚品牌ZARA为例,该公司通过对消费者登录网店的数据进行分析,找出最受欢迎的产品,作为实体店的推荐参考,果然效果很好。并在实体店及网店中不停地收集消费者反馈:“我喜欢这个图案”、“我讨厌这个扣子”等,所有消息都通过销售经理反馈给数据处理中心,最终各方信息都将被分类处理,成为设计、生产、销售的指引。ZARA借此将销售收入提高了10%。舍恩伯格在该书中提出了一个非常具有颠覆性的观点:通过对庞大数据分析知道“是什么”就够了,不必再去追问“为什么”,就好像ZARA只需通过“大数据”分析了解什么款式最受欢迎,不必再花精力去研究消费者为什么喜欢。这个观点对于企业管理者来说,尤为重要。为电网规划和新能源探路舍恩伯格说,可以抽象地认为,智能电网就是“大数据”这个概念在电力行业中的应用,就是通过网络将用户的用电习惯等信息传回给电网企业的信息中心,进行分析处理,并对电网规划、建设、服务等提供更可靠的依据。日前,美国加州大学洛杉矶分校的研究者就根据“大数据”理论设计了一款“电力地图掘知消”,将人口调查信息、电力企业提供的用户实时用电信息和地理、气象等信息全部集合在一起,制作了一款加州地图。该图以街区为单位,展示每个街区在当下时刻的用电量,甚至还可以将这个街区的用电量与该街区人的平均收入和建筑物类型等相比照,从而得出更为准确的社会各群体的用电习惯猛镇信息。这个“大数据”地图也为城市和电网规划提供了直观有效的负荷数预测依据,也可以按照图中显示的停电频率较高、过载较为严重的街区进行电网设施的优先改造。同时,对于风能、太阳能等具有间歇性的新能源,通过“大数据”分析进行有效地调节,也可以使新能源更好地与传统的水火电进行互补,更为灵活地出力。