您的位置首页百科问答

过点p(-2,0)的直线l与抛物线y^=4x相交所得弦长为8,求直线L 的方程

过点p(-2,0)的直线l与抛物线y^=4x相交所得弦长为8,求直线L 的方程

设直线与抛磨纤物线两个交点为A(x1,y1),B(x2,y2)因为直线过点(-2,0) 所以设直线方程为y=k(x+2)----(1与抛知游正物线方程y^2=4x----(2)联立方程组得(kx)^2+4(k^2-1)x+4K^2=0x1+X2=-[4(k^2-1)x]/((kx)^2),x1*x2=4(x1-x2)^2= (x1+X2)^2-4x1*x2=(-32k*k+16)/(k^4)-----(3)根据搭悔(1)方程y1-y2= k(x1+2)- k(x2+2)= k(x1-x2)弦长AB^2= (x1-x2)^2+(y1-y2)^2=(k*k+1) (x1-x2)^2=8*8=64-------(4)将(3)代入(4)中,得(k*k+1)*(-32k*k+16)/(k^4)=64(k*k+1)*(- 2k*k+1)=4(k^4)-2(k^4)-k^2+1=4(k^4)6(k^4)+k^2-1=0(2k*k+1)(3k*k-1)=03k*k=1K=±(√3)/3直线方程为y=±((√3)/3)*(x+2)