角动能守恒原理:质点对固定点的角动量对时间的微商,等于作用于该质点上的困亮力对该点的力矩。反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。
角动量守恒转台的实验原理为绕定轴转动的刚体,当对转轴的合外力矩为零时,刚体对转轴的角动量守恒,此为刚体的角动量守恒定律。
根据角动量定理,内力不影响系统的总角动量,因此只要外力矩为零,则系统的角动量守恒。若物体为刚体,则表现为物体绕轴具有恒定的转速。若物体是非刚体,则体系的转速与其转动惯量成念尺桐反比。
地球受到的来自于月球和太阳的引力经过其质心,如果不考虑潮汐力的作用,这些力的力矩为零,因此地球的自转角动量守恒,由于地球近似是一个刚体,因此表现为地球具有恒定的自转角速度。
同样,地球受到太阳的引力是有心力,故它绕太阳的公转运动也满足角动量守恒的条件,这就是开普勒第二定律:地球的矢径在相等的时间内扫过的面积相等。不过地球的轨道不是圆轨道,故公转角速度不是恒定的。
芭蕾舞表演者脚下受力的力矩如果足够小,她的角动量是守恒的,在她张开手臂时,转速就减小,而收拢手臂则转速增加。
跳水运动员在空中飞翔过程中只受重力作用,作用点正好是人体的转动中仔坦心,因此力矩为零,故角动量守恒。
若他想在空中多翻几次筋斗,则必须在这有限的时间内,尽可能提高翻转角速度,因此他必须尽可能的缩成一团以减小自身转动惯量;而入水时又要尽可能竖直向下,减小摇摆,因此就伸直全身,将转速降到最低。