有理数的混合运算 教学目标 1.进一步掌握有理数的运算法则和运算律; 2.使学生能够熟练地按有理数运算顺序进行混合运算; 3.注意培养学生的运算能力. 教学重点和难点 重点:有理数的混合运算. 难点:准确地掌握有理数的运算顺序和运算中的符号问题. 课堂教学过程设计 一、从学生原有认知结构提出问题 1.计算(五分钟练习): (5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25; (13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021; (17)(-2)4; (18)(-4)2; (19)-32; (20)-23; (24)3.4×104÷(-5). 2.说一说我们学过的有理数的运算律: 加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c); 乘法交换律:ab=ba; 乘法结合律:(ab)c=a(bc); 乘法分配律:a(b+c)=ab+ac. 二、讲授新课 前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里亏耐,含有以上的混合运算,按怎样的顺序进行运算? 1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行. 审题:(1)运算顺序如何? (2)符号如何? 说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同. 课堂练习 审题:运算顺序如何确定? 注意结果中的负号不能丢. 课堂练习 计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27); 2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减. 例3 计算: (1)(-3)×(-5)2; (2)〔(-3)×(-5)〕2; (3)(-3)2-(-6); (4)(-4×32)-(-4×3)2. 审题:运算顺序如何? 解:(1)(-3)×(-5)2=(-3)×25=-75. (2)〔(-3)×(-5)〕2=(15)2=225. (3)(-3)2-(-6)=9-(-6)=9+6=15. 绝空迅(4)(-4×32)-(-4×3)2 =(-4×9)-(-12)2 =-36-144 =-180. 注意并此:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方.(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减. 课堂练习 计算: (1)-72; (2)(-7)2; (3)-(-7)2; (7)(-8÷23)-(-8÷2)3. 例4 计算 (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4. 审题:(1)存在哪几级运算? (2)运算顺序如何确定? 解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4 =4-(-25)×(-1)+87÷(-3)×1(先乘方) =4-25-29(再乘除) =-50.(最后相加) 注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1. 课堂练习 计算: (1)-9+5×(-6)-(-4)2÷(-8); (2)2×(-3)3-4×(-3)+15. 3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号. 课堂练习 计算: 三、小结 教师引导学生一起总结有理数混合运算的规律. 1.先乘方,再乘除,最后加减; 2.同级运算从左到右按顺序运算; 3.若有括号,先小再中最后大,依次计算. 四、作业 1.计算: 2.计算: (1)-8+4÷(-2); (2)6-(-12)÷(-3); (3)3•(-4)+(-28)÷7; (4)(-7)(-5)-90÷(-15); 3.计算: 4.计算: (7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5. 5*.计算(题中的字母均为自然数): (1)(-12)2÷(-4)3-2×(-1)2n-1; (4)〔(-2)4+(-4)2•(-1)7〕2m•(53+35). 第二份 初一数学测试(六) (第一章 有理数 2001、10、18) 命题人:孙朝仁 得分 一、 选择题:(每题3分,共30分) 1.|-5|等于………………………………………………………………( ) (A)-5 (B)5 (C)±5 (D)0.2 2.在数轴上原点及原点右边的点所表示的数是……………………( ) (A)正数 (B)负数 (C)非正数 (D)非负数 3.用代数式表示“ 、b两数积与m的差”是………………………( ) (A) (B) (C) (D) 4.倒数等于它本身的数有………………………………………………( ) (A)1个 (B)2个 (C)3个 (D)无数个 5.在 (n是正整数)这六数中,负数的个数是……………………………………………………………………( ) (A)1个 (B)2个 (C)3个 (D)4个 6.若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是( ) (A)a<b (B)-a<b (C)|a|<|b| (D)-a>-b • • • 7.若|a-2|=2-a,则数a在数轴上的对应点在 (A) 表示数2的点的左侧 (B)表示数2的点的右侧……………( ) (C) 表示数2的点或表示数2的点的左侧 (D)表示数2的点或表示数2的点的左侧 8.计算 的结果是……………………………( ) (A) (B) (C) (D) 9.下列说法正确的是…………………………………………………………( ) (A) 有理数就是正有理数和负有理数(B)最小的有理数是0 (C)有理数都可以在数轴上找到表示它的一个点(D)整数不能写成分数形式 10.下列说法中错误的是………………………………………………………( ) (A) 任何正整数都是由若干个“1”组成 (B) 在自然数集中,总可以进行的运算是加法、减法、乘法 (C) 任意一个自然数m加上正整数n等于m进行n次加1运算 (D)分数 的特征性质是它与数m的乘积正好等于n 二、 填空题:(每题4分,共32分) 11.-0.2的相反数是 ,倒数是 。 12.冰箱冷藏室的温度是3℃,冷冻室的温度比冷藏室的温度低15℃,则冷冻室温度是 ℃。 13.紧接在奇数a后面的三个偶数是 。 14.绝对值不大于4的负整数是 。 15.计算: = 。 16.若a<0,b>0,|a|>|b|,则a+b 0。(填“>”或“=”或“<”号) 17.在括号内的横线上填写适当的项:2x-(3a-4b+c)=(2x-3a)-( )。 18.观察下列算式,你将发现其中的规律: ; ; ; ; ;……请用同一个字母表示数,将上述式子中的规律用等式表示出来: 。 三、 计算(写出计算过程):(每题7分,共28分) 19. 20. 21. (n为正整数) 22. 四、若 。(1)求a、b的值;(本题4分) (2)求 的值。(本题6分) 第三份 初一数学测试(六) (第一章 有理数 2001、10、18) 命题人:孙朝仁 班级 姓名 得分 一、 选择题:(每题3分,共30分) 1.|-5|等于………………………………………………………( ) (A)-5 (B)5 (C)±5 (D)0.2 2.在数轴上原点及原点右边的点所表示的数是………………( ) (A)正数 (B)负数 (C)非正数 (D)非负数 3.用代数式表示“ 、b两数积与m的差”是………………( ) (A) (B) (C) (D) 4.-12+11-8+39=(-12-8)+(11+39)是应用了 ( ) A、加法交换律B、加法结合律 C、加法交换律和结合律D、乘法分配律 5.将6-(+3)-(-7)+(-2)改写成省略加号的和应是 ( ) A、-6-3+7-2 B、6-3-7-2 C、6-3+7-2 D、6+3-7-2 6.若|x|=3,|y|=7,则x-y的值是 ( ) A、±4 B、±10 C、-4或-10 D、±4,±10 7.若a×b<0,必有 ( ) A、a>0,b<0 B、a<0,b>0 C、a、b同号 D、a、b异号 8.如果两个有理数的和是正数,积是负数,那么这两个有理数 ( ) A、都是正数 B、绝对值大的那个数正数,另一个是负数 C、都是负数 D、绝对值大的那个数负数,另一个是正数 9.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在 ( ) A、文具店 B、玩具店 C、文具店西边40米 D、玩具店东边-60米 10.已知有理数 、 在数轴上的位置如图 • • • 所示,那么在①a>0,②-b<0,③a-b>0, ④a+b>0四个关系式中,正确的有 ( ) A、4个 B、3个 C、2个 D、1个 二、 判断题:(对的画“+”,错的画“○”,每题1分,共6分) 11.0.3既不是整数又不是分数,因而它也不是有理数。 ( ) 12.一个有理数的绝对值等于这个数的相反数,这个数是负数。 ( ) 13.收入增加5元记作+5元,那么支出减少5元记作-5元。 ( ) 14.若a是有理数,则-a一定是负数。 ( ) 15.零减去一个有理数,仍得这个数。 ( ) 16.几个有理数相乘,若负因数的个数为奇数个,则积为负。 ( ) 三、 填空题:(每题3分,共18分) 17.在括号内填上适当的项,使等式成立:a+b-c+d=a+b-( )。 18.比较大小: │- │ │- │.(填“>”或“<”号) 19.如图,数轴上标出的点中任意相邻两点间的距离都相等,则a的值= 。 • • • • • • • • • 20.一个加数是0.1,和是-27.9,另一个加数是 。 21.-9,+6,-3三数的和比它们的绝对值的和小 。 22.等式 ×〔(-5)+(-13)〕= 根据的运算律是 。 四、 在下列横线上,直接填写结果:(每题2分,共12分) 23.-2+3= ;24.-27+(-51)= ; 25.-18-34= ; 26.-24-(-17)= ;27.-14×5= ; 28.-18×(-2)= 。 五、 计算(写出计算过程):(29、30每题6分,31、32每题7分,共26分) 29.(-6)-(-7)+(-5)-(+9) 30. 31. 32.(-5)×(-3 )-15×1 +〔 -( )×24〕 六、 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)。 ⑴如果现在的北京时间是7:00,那么现在的纽约时间是多少? ⑵小华现在想给远在巴黎的外公打电话,你认为合适吗?(每小题4分)
相关文章
-
加减的符号是什么?
2023-06-08 22:43 阅读(631) -
有理数的运算规则
2023-05-10 07:26 阅读(652) -
有理数的除法法则是什么
2023-05-09 20:52 阅读(656)
1 有理数的加减混合运算100道题含过程答案
638 阅读
2 有理数的加减法的公式是什么
593 阅读
3 加减乘除少一点打一字?
589 阅读
4 加减乘除的运算法则是什么
666 阅读
5 加减乘除 日语怎么说
690 阅读